1502-05-2: cvclododecanol. 1724-39-6: 2-methyl-3-heptanol. 18720-62-2; 1-cyclohexylethanol, 1193-81-3; 1-cyclohexyl-1-pentanol, 7338-43-4; 1-phenylethanol, 98-85-1; 2-octanone, 111-13-7; 5-nonanone, 502-56-7; cycloheptanone, 502-42-1; cyclooctanone, 502-49-8; cvclodecanone, 1502-06-3; cvclododecanone, 830-13-7; 2-methyl-3-heptanone, 13019-20-0; 1-cyclohexylethanone, 823-76-7; 1-cyclohexyl-1-pentanone, 5445-35-2; acetophenone, 98-86-2; Raney nickel, 7440-02-0; 1-octene, 111-66-0; ethylbenzene, 100-41-4.

Marie E. Krafft,* Branka Zorc

Department of Chemistry Florida State University Tallahassee, Florida 32306-3006 Received July 18, 1986

Enantiomeric Excess Determination without Chiral Auxiliary Compounds. A New ³¹P NMR Method for **Amino Acid Esters and Primary Amines**

Summary: Amino acid esters and primary amines vield diastereoisomeric methylphosphonic diamides 5 upon reaction with MePSCl₂. The enantiomeric excess of amino acid esters and amines is easily determined by measurement of the ratio of diastereoisomers of 5 by ³¹P NMR spectroscopy.

Sir: We recently developed a facile method for enantiomeric excess (ee) determinations of alcohols^{1a} and thiols.^{1b} The principle is a coupling reaction of chiral alcohols or thiols 1 with an achiral phosphorus reagent to afford diastereoisomeric phosphonates 2 (eq 1). PCl_3 is

$$\begin{array}{cccc} & & & & & & & & \\ RXH & & & & & & & \\ \hline 1 & & & & & & \\ (X = 0,S) & & & & & (R' = H, CH_3) \end{array}$$
(1)

used for alcohols and MePOCl₂ for both alcohols and thiols. The enantiomeric purities of the alcohols or thiols 1 are easily determined by ³¹P NMR measurement of the ratio of diastereoisomers of 2.

The increasing use of amino acids,² either natural or synthetically obtained, in asymmetric syntheses made the extension of our ³¹P NMR method for fast and accurate ee determination of these and amines derived therefrom a major goal of our research. Extensive investigations³ showed, however, that neither phosphorus trichloride nor alkylphosphonic dichloride is a satisfactory reagent for this purpose.

We now report a completely effective method for the ee determination of amino acids and primary amines based on the principles described above. Alkylphosphonothioic dichlorides are well-suited for the coupling reaction of

Figure 1. ³¹P NMR spectrum of 5 obtained from racemic allylglycine and MePSCl₂ (CDCl₃).

primary amines. Thus, methylphosphonothioic dichloride $(3)^4$ in the presence of 2 equiv of triethylamine reacts quantitatively in 10 min at -20 °C with 2 equiv of (R,-S)-allylglycine methyl ester (4) to afford diastereoisomeric methylphosphonothioic diamides 5 (eq 2).⁵

The ³¹P NMR spectrum of 5 shows three well-separated singlets for the racemate (RR + SS) and two meso (RS $meso_1$, RS $meso_2$) diastereoisomers with a meso/dl ratio of 49:51 (Figure 1).⁶ The ratio of these singlets is directly related to the enantiomeric excess of the amino acid esters.⁵ For 96.6% enantiomerically pure 5 (as determined by optical rotation) the two meso peaks could just be observed; an ee of 97% was calculated from the integration. Although MePSCl₂ has to be used at -20 °C to avoid byproduct formation whereas commercially avilable C₆H₅P-SCl₂ can be used at room temperature, we prefer the former for this ee determination because it gives superior chemical shift differences for the diastereoisomers (see

(6) All spectra were recorded in CDCl₃ at 80.988 MHz on a Nicolet 200 NT spectrometer; chemical shift values are in hertz with 85% H_3PO_4 (δ 0.0 Hz) as an external standard.

- (8) Vigneron, J. P.; Dhaenens, M.; Horeau, A. Tetrahedron 1973, 29, 1055.
- (9) Ten Hoeve, W.; Wynberg, H. J. Org. Chem. 1985, 50, 4508.
 (10) Johnson, C. R.; Elliott, R. C.; Penning, T. D. J. Am. Chem. Soc.
- 1984. 106. 5019.
- (11) Dale, J. A.; Dull, D. L.; Mosher, H. S. J. Org. Chem. 1969, 34, 2543

(12) Frank, H.; Nicholson, G. J.; Bayer, E. Angew. Chem., Int. Ed. Engl. 1978, 17, 364. Davankov, V. A. Adv. Chromatog. 1980, 18, 139.
Pirkle, W. H.; Pochapsky, T. C. J. Am. Chem. Soc. 1986, 108, 352.
(13) Dale, J. A.; Mosher, H. S. J. Am. Chem. Soc. 1968, 90, 3732.
McCreary, M. O.; Lewis, D. W.; Wernick, D. L.; Whitesides, G. M. J. Am. Chem. Soc. 1976 (2010) Chem. Soc. 1974, 96, 1038. Pirkle, W. H.; Beare, S. D. Ibid. 1969, 91, 5150.

 ⁽a) Feringa, B. L.; Smaardijk, A. A.; Wynberg, H. J. Am. Chem. Soc. 1985, 107, 4798.
 (b) Feringa, B. L.; Smaardijk, A. A.; Wynberg, H.; Strijtveen, B.; Kellogg, R. M. Tetrahedron Lett. 1986, 27, 997.
 (2) For example: Martens, J. In Topics in Current Chemistry; Boschke, F. L., Ed., Springer Verlag: Berlin, Vol. 125, p 165. Seebach, D.; Aebi, J. D. Tetrahedron Lett. 1984, 25, 2545. Vriesema, B. K.; Ten Hoeve, W.; Wynberg, H.; Kellogg, R. M.; Boesten, W. H. J.; Meijer, E. M.; Schoemaker, H. E. Tetrahedron Lett. 1986, 27, 2045. Vriesema, B. K.; Kellogg, R. M. Tetrahedron Lett. 1986, 27, 2049. Evans, D. A.; Sjogren, E. B. Tetrahedron Lett. 1985, 26, 3783. Seebach, D.; Imwink-elreid, B.; Weher, T. "Enatiomerically Pure Compound Syntheses with elreid, R.; Weber, T. "Enantiomerically Pure Compound Syntheses with C Bond Formation via Acetals and Enamines" in Modern Synthetic Methods, Springer Verlag: Berlin, in press

⁽³⁾ Feringa, B. L.; Smaardijk, A. A., unpublished results. For example, MePOCl₂ does not give quantitative reaction, byproduct formation is excessive, and ratios for the diastereomers deviate from statistical for primary amines.

⁽⁴⁾ Hoffmann, F.; Wadsworth, D.; Weiss, H. J. Am. Chem. Soc. 1958, 80. 3945.

⁽⁵⁾ Only one enantiomer of racemic 5 is shown

⁽⁷⁾ The enantiomeric purity (p) was calculated from the integrated peak area's Q and Q' of the d,l isomer and the meso isomers, respectively (with dl/meso ratio K = Q/Q') using Horeau's⁸ formula, $p^2 = (K - 1)/(K$ + 1).

1 able 1. "F NMA Data of Methylphosphonic Diamides from Racemic Amines and MePSCI2"								
entry	amine	$\delta(RS \text{ meso}), e \text{ Hz}$	$\delta(RS \text{ meso}), e \text{ Hz}$	$\delta(RR,SS),$ Hz	ratio meso/dl			
1	NH2	5507	5404	5395	49:51			
	С ₈ н ₅ Сн ₂ ССО ₂ Сн ₃ н							
2	NH2	5661	5672	5647	50:50			
	(Сн₃)₂СНĊСО₂СҢ₃ │ Н							
3	NH ₂	5278	5348	5297	51:49			
	СН ₃ ССО2СН ₃ Н							
4		5692	5704	5709	a, b			
_	(CH3)3CCCC2CH3 H							
5	NH ₂	5504	5575	5485	49:51			
	CH ₃ S(CH ₂) ₂ CCO ₂ CH ₃							
6	NH2	5434	5516	5451	49:51			
	CH3S(CH2)3CCO2CH3							
7	H NH₂	5438	5536	5457	10.51			
•	C6H5CH2S(CH2)3CCO2CH3	0400	0000	0401	40.01			
	 H							
8	NH2	5355	5472	5393	51: 49			
	H ₂ C==CHCH ₂ CCO ₂ CH ₃							
9	NH2	5079	5319	5210	49:51			
	СенаССНа							
10	H NHA	5096	5000	5169	40.51			
10	CeHa CCHa	5066	5206	9109	49:01			
	 H							
11	NH2	5052	5117	5110	a, d			
	C6H5CH2ĊCH3 │							
12	Ή NHA	5161	5409	5315	49 5.50 5			
12		5101	0400	0010	40.0.00.0			
	H							
13	NH ₂	5159	5453	5325	50:50			
	ρ-MeOC ₆ H₅CH₂ĊC ₆ H₅ │ Η							
14	NH2 İ	5139	5400	5217	50:50			
	α-C ₁₀ H7ĊCH3 H							
15	NH ₂	4995	5035	5015	49.5:50.5			
	C2H5CCH3							

 Cable I. ³¹P NMR Data of Methylphosphonic Diamides from Racemic Amines and MePSCl₂⁶

^a Incomplete base-line separation.¹⁴ ^b Approximately 50:50. ^c Phenylphosphonothioic dichloride as reagent. ^d Approximately 47:53. ^e The configuration of phosphorus in the meso compounds has not yet been determined.

Table I, entries 9, 10). This observation is in agreement with previous observations with alkylphosphonates^{1b} for which the largest chemical shift differences between diastereoisomers were obtained with the smallest alkyl substituents.

Several ee determinations were performed on partially enriched amino acid esters and primary amines with this new method. Some of the data are summarized in Table II together with ee's determined by weight and by rotation. These results show that the enantiomeric purities obtained via the different methods are in good agreement and that no racemization occurs during phosphonic diamide formation. The scope of this ³¹P NMR method encompasses various types of amino acids esters and primary amines as summarized in Table I. The results show that wellseparated signals are observed for the diastereoisomeric methylphosphonothioic diamides, that accurate integration is possible (except for entries 4, 11),¹⁴ and that meso/dl ratios are in accord with those expected for racemic compounds. Chemical shift differences are comparable with those obtained using *chiral* phospholidine derivatizing agents, e.g., $\Delta\delta$ 0.175 and 0.628 ppm for α -phenylethylamine and *sec*-butylamine, respectively, using Johnson's reagent.¹⁰ For α -phenylethylamine $\Delta\delta$ 0.24 (¹⁹F NMR) and 0.06 ppm (¹H NMR) were found by using Mosher's reagent.¹¹ With our method, $\Delta\delta$ 1.62, 1.34 ppm for α -phenylethylamine and 0.25, 0.25 ppm for *sec*-butylamine were

⁽¹⁴⁾ Complete base-line separation was obtained when the spectra were recorded at -20 °C.

Table II. D	Determination	of ee's	of Optic	ally	Active	Amines
-------------	----------------------	---------	----------	------	--------	--------

amine	% ee by weight	% ee by rotation	% ee by ³¹ P NMF
1. l - α -phenylethylamine	50	48ª	50
2. l - α -phenylethylamine		95^a	>98 ^b
3. / x-naphthylethylamine	33.3	32	34
4. Anaphthylethylamine		98	96
5. d - β -(p -methoxyphenyl)- α - phenylethylamine		с	94
6. <i>l</i> -valine methyl ester 7. <i>l</i> -valine methyl ester	82	d100	84 >98 ⁶
8. <i>l</i> -phenylalanine methyl ester	80	d	77.5
9. <i>l</i> -homomethionine methyl ester	24	20	25
10. <i>l</i> -allylglycine methyl ester		96.6	97

^a Commercially available, unpurified amine. ^b Other enantiomer could not be detected. ^c $[\alpha]_{578}$ + 64.3° (c 1.07, CH₃OH), ee = 95%.⁹ ^d Not measured.

observed. Alkylphosphonothioic dichlorides have so far not been satisfactory for the ee determination of chiral secondary amines.

Several methods exist for the ee determination of amino acid derivatives and amines, e.g., chromatographic techniques using chiral phases¹² and NMR methods.¹³ The new method presented here compares favorably with the other currently available techniques in view of the large shift differences obtained for the diastereoisomers, the simple experimental procedure (no workup), and the fact that in contrast to all other methods *no chiral auxiliary compound* is necessary.

A typical experimental procedure follows: To a stirred solution of primary amine or amino acid methyl ester (1.0 mmol) and triethylamine (1.0 mmol) and 1 mL of $CDCl_3$ was added at -20 °C 0.5 mmol of $MePSCl_2$ dissolved in 1 mL of $CDCl_3$. After being stirred for 10 min, the solution was transferred into a 10-mm NMR tube and the ¹H decoupled ³¹P NMR spectrum recorded.

Ben L. Feringa,* Bert Strijtveen, Richard M. Kellogg

Department of Organic Chemistry University of Groningen Nijenborgh 16, 9747 AG Groningen The Netherlands Received June 23, 1986

Studies Directed toward the Synthesis of Naturally Occurring Acyltetramic Acids. 2. Preparation of the Macrocyclic Subunit of Ikarugamycin

Summary: The synthesis of a model for the macrocyclic lactam system present in ikarugamycin (1) is described herein. The convergent route is culminated by a novel thermal intramolecular ketene trapping reaction with an amine to afford a 16-membered ring lactam. Treatment of lactams 21 and 22 with potassium *tert*-butoxide gave the model tetramic acids 3 and 23 via a transannular Dieckmann condensation.

Sir: The antiprotozoal antibiotic ikarugamycin (1), a white crystalline substance isolated from the culture media of Streptomyces phaeochromogenes, and the structurally related compound capsimycin (2) are examples of a relatively rare macrocyclic lactam sytem containing a tetramic acid unit as well as a nonterpenoid tricarbocycle.¹

^aReagents: (a) CuCO₃ (1 equiv), H_2O , Δ , 0.75 h; (b) ((CH₃)₃C-O₂C)₂O (excess), NaHCO₃, H_2O -dioxane (3:1), 8 °C, 48 h; (c) H_2S ; (d) CH₂=CHCH₂OCOCl (excess), NaHCO₃, H_2O -dioxane (4:1), 0 °C, 16 h; (e) DCC (1.2 equiv), CH₃OH (excess), DMAP (catalytic), CH₂Cl₂, 0 °C, 1.5 h; (f) CF₃CO₂H-CH₂Cl₂ (1:3), 0 °C, 0.5 h.

We have previously reported the synthesis of the carbocyclic portion of 1 via an intramolecular [4 + 2] cycloaddition strategy.² The focus of our work has most recently been on the synthetically challenging macrocyclic lactam substructure.

Retrosynthetically, the macrocyclic unit may be viewed as comprising an L-ornithine subunit and a β -keto ester group bridged by a suitably substituted cyclopentane ring. Our convergent strategy called for the three units to be assembled followed by a macrocyclization (vide infra). The model study described below details the preparation of macrocycles 3 and 23 where the tricyclic system of 1 has been replaced by a single five-membered ring.

Construction of the requisite ornithine derivative 7 and cyclopentane unit 13 is described in Schemes I and II,

0022-3263/86/1951-5486\$01.50/0 © 1986 American Chemical Society

^{(1) (}a) Jomon, K.; Kuroda, Y.; Ajisaika, M.; Saki, H. J. Antibiot. 1972, 25, 271. (b) Ito, S.; Hirata, Y. Bull. Chem. Soc. Jpn. 1977, 50, 1813. (c) Ito, S.; Hirata, Y. Ibid. 1977, 50, 227. (d) Ito, S.; Hirata, Y. Tetrahedron Lett. 1972, 1181. (e) Ito, S.; Hirata, Y. Ibid. 1972, 1185. (f) Ito, S.; Hirata, Y. Ibid. 1972, 2557.

⁽²⁾ Boeckman, R. K., Jr.; Napier, J. J.; Thomas, E. W.; Sato, R. I. J. Org. Chem. 1983, 48, 4152.